Lösung 4.2:5d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | K  (hat „Solution 4.2:5d“ nach „Lösung 4.2:5d“ verschoben: Robot: moved page) | 
Version vom 14:59, 22. Okt. 2008
By subtracting 360° from 495°, we do not change the value of the tangent,
| \displaystyle \tan 495^{\circ} = \tan (495^{\circ} - 360^{\circ}) = \tan 135^{\circ}\,\textrm{.} | 
We know from exercise a that \displaystyle \cos 135^{\circ} = -1/\!\sqrt{2} and \displaystyle \sin 135^{\circ} = 1/\!\sqrt{2}\,, which gives
| \displaystyle \tan 135^{\circ} = \frac{\sin 135^{\circ}}{\cos 135^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.} | 
 
		  