Lösung 4.1:6b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
K (hat „Solution 4.1:6b“ nach „Lösung 4.1:6b“ verschoben: Robot: moved page) |
Version vom 14:47, 22. Okt. 2008
A quick way to interpret the equation is to compare it with the standard formula for the equation of a circle with centre at (a,b) and radius r,
\displaystyle (x-a)^2 + (y-b)^2 = r^2\,\textrm{.} |
In our case, we can write the equation as
\displaystyle (x-1)^2 + (y-2)^2 = (\sqrt{3})^2 |
and then we see that it describes a circle with centre at (1,2) and radius \displaystyle \sqrt{3}\,.