Lösung 2.3:1c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
K (hat „Solution 2.3:1c“ nach „Lösung 2.3:1c“ verschoben: Robot: moved page) |
Version vom 14:05, 22. Okt. 2008
As always when completing the square, we focus on the quadratic and linear terms \displaystyle 2x-x^{2}, which we also can write as \displaystyle -(x^{2}-2x). If we neglect the minus sign, we can complete square of the expression \displaystyle 2x-x^{2} by using the formula
\displaystyle x^{2}-ax = \Bigl(x-\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2} |
and we obtain
\displaystyle x^{2}-2x = \Bigl(x-\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x-1)^{2}-1\,\textrm{.} |
This means that
\displaystyle \begin{align}
5+2x-x^{2} &= 5-(x^{2}-2x) = 5-\bigl((x-1)^{2}-1\bigr)\\[5pt] &= 5-(x-1)^{2}+1 = 6-(x-1)^{2}\textrm{.} \end{align} |
A quick check shows that we have completed the square correctly
\displaystyle \begin{align}
6-(x-1)^{2} &= 6-(x^{2}-2x+1)\\[5pt] &= 6-x^{2}+2x-1\\[5pt] & =5+2x-x^{2}\textrm{.} \end{align} |