Lösung 2.3:1c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (hat „Solution 2.3:1c“ nach „Lösung 2.3:1c“ verschoben: Robot: moved page)

Version vom 14:05, 22. Okt. 2008

As always when completing the square, we focus on the quadratic and linear terms \displaystyle 2x-x^{2}, which we also can write as \displaystyle -(x^{2}-2x). If we neglect the minus sign, we can complete square of the expression \displaystyle 2x-x^{2} by using the formula

\displaystyle x^{2}-ax = \Bigl(x-\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}

and we obtain

\displaystyle x^{2}-2x = \Bigl(x-\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x-1)^{2}-1\,\textrm{.}

This means that

\displaystyle \begin{align}

5+2x-x^{2} &= 5-(x^{2}-2x) = 5-\bigl((x-1)^{2}-1\bigr)\\[5pt] &= 5-(x-1)^{2}+1 = 6-(x-1)^{2}\textrm{.} \end{align}

A quick check shows that we have completed the square correctly

\displaystyle \begin{align}

6-(x-1)^{2} &= 6-(x^{2}-2x+1)\\[5pt] &= 6-x^{2}+2x-1\\[5pt] & =5+2x-x^{2}\textrm{.} \end{align}