Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.1:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (hat „Solution 2.1:4c“ nach „Lösung 2.1:4c“ verschoben: Robot: moved page)

Version vom 13:47, 22. Okt. 2008

Instead of multiplying together the whole expression, and then reading off the coefficients, we investigate which terms from the three brackets together give terms in x¹ and x².

If we start with the term in x, we see that there is only one combination of a term from each bracket which, when multiplied, gives x¹,

(xx3+x5)(1+3x+5x2)(27x2x4)=+x12+

so, the coefficient in front of x is 12=2.

As for x², we also have only one possible combination

(xx3+x5)(1+3x+5x2)(27x2x4)=+x3x2+

The coefficient in front of x² is 32=6.