Lösung 4.4:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Let's first investigate when the equality
Let's first investigate when the equality
-
{{Displayed math||<math>\tan u=\tan v</math>}}
+
{{Abgesetzte Formel||<math>\tan u=\tan v</math>}}
is satisfied. Because <math>\tan u</math> can be interpreted as the slope (gradient) of the line which makes an angle ''u'' with the positive ''x''-axis, we see that for a fixed value of <math>\tan u</math>, there are two angles ''v'' in the unit circle with this slope,
is satisfied. Because <math>\tan u</math> can be interpreted as the slope (gradient) of the line which makes an angle ''u'' with the positive ''x''-axis, we see that for a fixed value of <math>\tan u</math>, there are two angles ''v'' in the unit circle with this slope,
-
{{Displayed math||<math>v=u\qquad\text{and}\qquad v=u+\pi\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>v=u\qquad\text{and}\qquad v=u+\pi\,\textrm{.}</math>}}
[[Image:4_4_5_b.gif|center]]
[[Image:4_4_5_b.gif|center]]
Zeile 12: Zeile 12:
<math>\pi</math> to ''u'', we will obtain all the angles ''v'' which satisfy the equality
<math>\pi</math> to ''u'', we will obtain all the angles ''v'' which satisfy the equality
-
{{Displayed math||<math>v=u+n\pi\,,</math>}}
+
{{Abgesetzte Formel||<math>v=u+n\pi\,,</math>}}
where ''n'' is an arbitrary integer.
where ''n'' is an arbitrary integer.
Zeile 18: Zeile 18:
If we apply this result to the equation
If we apply this result to the equation
-
{{Displayed math||<math>\tan x=\tan 4x</math>}}
+
{{Abgesetzte Formel||<math>\tan x=\tan 4x</math>}}
we see that the solutions are given by
we see that the solutions are given by
-
{{Displayed math||<math>4x = x+n\pi\qquad\text{(n is an arbitrary integer),}</math>}}
+
{{Abgesetzte Formel||<math>4x = x+n\pi\qquad\text{(n is an arbitrary integer),}</math>}}
and solving for ''x'' gives
and solving for ''x'' gives
-
{{Displayed math||<math>x = \tfrac{1}{3}n\pi\qquad\text{(n is an arbitrary integer).}</math>}}
+
{{Abgesetzte Formel||<math>x = \tfrac{1}{3}n\pi\qquad\text{(n is an arbitrary integer).}</math>}}

Version vom 08:59, 22. Okt. 2008

Let's first investigate when the equality

\displaystyle \tan u=\tan v

is satisfied. Because \displaystyle \tan u can be interpreted as the slope (gradient) of the line which makes an angle u with the positive x-axis, we see that for a fixed value of \displaystyle \tan u, there are two angles v in the unit circle with this slope,

\displaystyle v=u\qquad\text{and}\qquad v=u+\pi\,\textrm{.}

The angle v has the same slope after every half turn, so if we add multiples of \displaystyle \pi to u, we will obtain all the angles v which satisfy the equality

\displaystyle v=u+n\pi\,,

where n is an arbitrary integer.

If we apply this result to the equation

\displaystyle \tan x=\tan 4x

we see that the solutions are given by

\displaystyle 4x = x+n\pi\qquad\text{(n is an arbitrary integer),}

and solving for x gives

\displaystyle x = \tfrac{1}{3}n\pi\qquad\text{(n is an arbitrary integer).}