Lösung 4.4:3c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 5: Zeile 5:
It is then easy to set up the general solution by adding multiples of <math>360^{\circ}\,</math>,
It is then easy to set up the general solution by adding multiples of <math>360^{\circ}\,</math>,
-
{{Displayed math||<math>x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}</math>}}
+
{{Abgesetzte Formel||<math>x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}</math>}}
for all integers ''n'', which gives
for all integers ''n'', which gives
-
{{Displayed math||<math>x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}</math>}}

Version vom 08:59, 22. Okt. 2008

If we consider the entire expression \displaystyle x + 40^{\circ} as an unknown, we have a basic trigonometric equation and can, with the aid of the unit circle, see that there are two solutions to the equation for \displaystyle 0^{\circ}\le x+40^{\circ}\le 360^{\circ} namely \displaystyle x+40^{\circ} = 65^{\circ} and the symmetric solution \displaystyle x + 40^{\circ} = 180^{\circ} - 65^{\circ} = 115^{\circ}\,.

It is then easy to set up the general solution by adding multiples of \displaystyle 360^{\circ}\,,

\displaystyle x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}

for all integers n, which gives

\displaystyle x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}