Lösung 4.3:8a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| We rewrite <math>\tan v</math> on the left-hand side as <math>\frac{\sin v}{\cos v}</math>, so that | We rewrite <math>\tan v</math> on the left-hand side as <math>\frac{\sin v}{\cos v}</math>, so that | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.}</math>}} | 
| If we then use the Pythagorean identity | If we then use the Pythagorean identity | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\cos^2\!v + \sin^2\!v = 1</math>}} | 
| and rewrite <math>\cos^2\!v</math> in the denominator as <math>1 - \sin^2\!v</math>, we get what we are looking for on the right-hand side. The whole calculation is | and rewrite <math>\cos^2\!v</math> in the denominator as <math>1 - \sin^2\!v</math>, we get what we are looking for on the right-hand side. The whole calculation is | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.}</math>}} | 
Version vom 08:56, 22. Okt. 2008
We rewrite \displaystyle \tan v on the left-hand side as \displaystyle \frac{\sin v}{\cos v}, so that
| \displaystyle \tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.} | 
If we then use the Pythagorean identity
| \displaystyle \cos^2\!v + \sin^2\!v = 1 | 
and rewrite \displaystyle \cos^2\!v in the denominator as \displaystyle 1 - \sin^2\!v, we get what we are looking for on the right-hand side. The whole calculation is
| \displaystyle \tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.} | 
 
		  