Lösung 4.3:8a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We rewrite <math>\tan v</math> on the left-hand side as <math>\frac{\sin v}{\cos v}</math>, so that
We rewrite <math>\tan v</math> on the left-hand side as <math>\frac{\sin v}{\cos v}</math>, so that
-
{{Displayed math||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.}</math>}}
If we then use the Pythagorean identity
If we then use the Pythagorean identity
-
{{Displayed math||<math>\cos^2\!v + \sin^2\!v = 1</math>}}
+
{{Abgesetzte Formel||<math>\cos^2\!v + \sin^2\!v = 1</math>}}
and rewrite <math>\cos^2\!v</math> in the denominator as <math>1 - \sin^2\!v</math>, we get what we are looking for on the right-hand side. The whole calculation is
and rewrite <math>\cos^2\!v</math> in the denominator as <math>1 - \sin^2\!v</math>, we get what we are looking for on the right-hand side. The whole calculation is
-
{{Displayed math||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.}</math>}}

Version vom 08:56, 22. Okt. 2008

We rewrite \displaystyle \tan v on the left-hand side as \displaystyle \frac{\sin v}{\cos v}, so that

\displaystyle \tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.}

If we then use the Pythagorean identity

\displaystyle \cos^2\!v + \sin^2\!v = 1

and rewrite \displaystyle \cos^2\!v in the denominator as \displaystyle 1 - \sin^2\!v, we get what we are looking for on the right-hand side. The whole calculation is

\displaystyle \tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.}