Lösung 4.3:4f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 2: | Zeile 2: | ||
in terms of <math>\cos v</math> and <math>\sin v</math>, | in terms of <math>\cos v</math> and <math>\sin v</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\cos\Bigl(v-\frac{\pi}{3}\Bigr) = \cos v\cdot \cos\frac{\pi }{3} + \sin v\cdot \sin\frac{\pi}{3}\,\textrm{.}</math>}} |
Since <math>\cos v = b</math> and <math>\sin v = \sqrt{1-b^2}</math> we obtain | Since <math>\cos v = b</math> and <math>\sin v = \sqrt{1-b^2}</math> we obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\cos\Bigl(v-\frac{\pi}{3}\Bigr) = b\cdot\frac{1}{2} + \sqrt{1-b^2}\cdot\frac{\sqrt{3}}{2}\,\textrm{.}</math>}} |
Version vom 08:55, 22. Okt. 2008
Using the addition formula for cosine, we can express \displaystyle \cos (v-\pi/3) in terms of \displaystyle \cos v and \displaystyle \sin v,
\displaystyle \cos\Bigl(v-\frac{\pi}{3}\Bigr) = \cos v\cdot \cos\frac{\pi }{3} + \sin v\cdot \sin\frac{\pi}{3}\,\textrm{.} |
Since \displaystyle \cos v = b and \displaystyle \sin v = \sqrt{1-b^2} we obtain
\displaystyle \cos\Bigl(v-\frac{\pi}{3}\Bigr) = b\cdot\frac{1}{2} + \sqrt{1-b^2}\cdot\frac{\sqrt{3}}{2}\,\textrm{.} |