Lösung 4.3:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The formula for double angles gives
The formula for double angles gives
-
{{Displayed math||<math>\sin 2v=2\sin v\cos v</math>}}
+
{{Abgesetzte Formel||<math>\sin 2v=2\sin v\cos v</math>}}
and from exercise b, we have <math>\sin v = \sqrt{1-b^2}\,</math>. Thus,
and from exercise b, we have <math>\sin v = \sqrt{1-b^2}\,</math>. Thus,
-
{{Displayed math||<math>\sin 2v = 2b\sqrt{1-b^2}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\sin 2v = 2b\sqrt{1-b^2}\,\textrm{.}</math>}}

Version vom 08:55, 22. Okt. 2008

The formula for double angles gives

\displaystyle \sin 2v=2\sin v\cos v

and from exercise b, we have \displaystyle \sin v = \sqrt{1-b^2}\,. Thus,

\displaystyle \sin 2v = 2b\sqrt{1-b^2}\,\textrm{.}