Lösung 4.3:3c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
With the help of the Pythagorean identity, we can express <math>\cos v</math> in terms of <math>\sin v</math>,
With the help of the Pythagorean identity, we can express <math>\cos v</math> in terms of <math>\sin v</math>,
-
{{Displayed math||<math>\cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \cos v = \pm\sqrt{1-\sin^2 v}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \cos v = \pm\sqrt{1-\sin^2 v}\,\textrm{.}</math>}}
In addition, we know that the angle <math>v</math> lies between <math>-\pi/2</math>
In addition, we know that the angle <math>v</math> lies between <math>-\pi/2</math>
and <math>\pi/2</math>, i.e. either in the first or fourth quadrant, where angles always have a positive ''x''-coordinate (cosine value); thus, we can conclude that
and <math>\pi/2</math>, i.e. either in the first or fourth quadrant, where angles always have a positive ''x''-coordinate (cosine value); thus, we can conclude that
-
{{Displayed math||<math>\cos v = \sqrt{1-\sin^2 v} = \sqrt{1-a^2}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\cos v = \sqrt{1-\sin^2 v} = \sqrt{1-a^2}\,\textrm{.}</math>}}

Version vom 08:54, 22. Okt. 2008

With the help of the Pythagorean identity, we can express \displaystyle \cos v in terms of \displaystyle \sin v,

\displaystyle \cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \cos v = \pm\sqrt{1-\sin^2 v}\,\textrm{.}

In addition, we know that the angle \displaystyle v lies between \displaystyle -\pi/2 and \displaystyle \pi/2, i.e. either in the first or fourth quadrant, where angles always have a positive x-coordinate (cosine value); thus, we can conclude that

\displaystyle \cos v = \sqrt{1-\sin^2 v} = \sqrt{1-a^2}\,\textrm{.}