Lösung 4.3:2b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we write the angle <math>\frac{7\pi }{5}</math> as | If we write the angle <math>\frac{7\pi }{5}</math> as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{7\pi}{5} = \frac{5\pi+2\pi}{5} = \pi + \frac{2\pi }{5}</math>}} |
we see that <math>7\pi/5</math> is an angle in the third quadrant. | we see that <math>7\pi/5</math> is an angle in the third quadrant. | ||
Zeile 9: | Zeile 9: | ||
The angle between <math>0</math> and <math>\pi</math> which has the same ''x''-coordinate as the angle <math>7\pi/5</math>, and hence the same cosine value, is the reflection of the angle <math>7\pi/5</math> in the ''x''-axis, i.e. | The angle between <math>0</math> and <math>\pi</math> which has the same ''x''-coordinate as the angle <math>7\pi/5</math>, and hence the same cosine value, is the reflection of the angle <math>7\pi/5</math> in the ''x''-axis, i.e. | ||
- | {{ | + | {{Abgesetzte Formel||<math>v = \pi -\frac{2\pi}{5} = \frac{3\pi}{5}\,\textrm{.}</math>}} |
Version vom 08:54, 22. Okt. 2008
If we write the angle \displaystyle \frac{7\pi }{5} as
\displaystyle \frac{7\pi}{5} = \frac{5\pi+2\pi}{5} = \pi + \frac{2\pi }{5} |
we see that \displaystyle 7\pi/5 is an angle in the third quadrant.
The angle between \displaystyle 0 and \displaystyle \pi which has the same x-coordinate as the angle \displaystyle 7\pi/5, and hence the same cosine value, is the reflection of the angle \displaystyle 7\pi/5 in the x-axis, i.e.
\displaystyle v = \pi -\frac{2\pi}{5} = \frac{3\pi}{5}\,\textrm{.} |