Lösung 4.2:6

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 15: Zeile 15:
Hence,
Hence,
-
{{Displayed math||<math>x = a-b = \sqrt{3}-1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x = a-b = \sqrt{3}-1\,\textrm{.}</math>}}

Version vom 08:53, 22. Okt. 2008

We can work out the length we are looking for by taking the difference \displaystyle a-b of the sides \displaystyle a and \displaystyle b in the triangles below.

If we take the tangent of the given angle in each triangle, we easily obtain \displaystyle a and \displaystyle b.

Image:4_2_6_13.gif \displaystyle a = 1\cdot\tan 60^{\circ} = \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \frac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} = \sqrt{3}
Image:4_2_6_4.gif \displaystyle b = 1\cdot\tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}} = 1

Hence,

\displaystyle x = a-b = \sqrt{3}-1\,\textrm{.}