Lösung 4.2:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
In exercise 4.2:3e, we studied the angle <math>3\pi/4</math> and found that
In exercise 4.2:3e, we studied the angle <math>3\pi/4</math> and found that
-
{{Displayed math||<math>\cos\frac{3\pi }{4} = -\frac{1}{\sqrt{2}}\qquad\text{and}\qquad\sin\frac{3\pi}{4} = \frac{1}{\sqrt{2}}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\cos\frac{3\pi }{4} = -\frac{1}{\sqrt{2}}\qquad\text{and}\qquad\sin\frac{3\pi}{4} = \frac{1}{\sqrt{2}}\,\textrm{.}</math>}}
Because <math>\tan x</math> is defined as <math>\frac{\sin x}{\cos x}</math>, we get immediately that
Because <math>\tan x</math> is defined as <math>\frac{\sin x}{\cos x}</math>, we get immediately that
-
{{Displayed math||<math>\tan\frac{3\pi}{4} = \frac{\sin\dfrac{3\pi}{4}}{\cos \dfrac{3\pi}{4}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\tan\frac{3\pi}{4} = \frac{\sin\dfrac{3\pi}{4}}{\cos \dfrac{3\pi}{4}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.}</math>}}

Version vom 08:52, 22. Okt. 2008

In exercise 4.2:3e, we studied the angle \displaystyle 3\pi/4 and found that

\displaystyle \cos\frac{3\pi }{4} = -\frac{1}{\sqrt{2}}\qquad\text{and}\qquad\sin\frac{3\pi}{4} = \frac{1}{\sqrt{2}}\,\textrm{.}

Because \displaystyle \tan x is defined as \displaystyle \frac{\sin x}{\cos x}, we get immediately that

\displaystyle \tan\frac{3\pi}{4} = \frac{\sin\dfrac{3\pi}{4}}{\cos \dfrac{3\pi}{4}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.}