Lösung 4.2:1d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 5: Zeile 5:
By writing the quotient for <math>\cos 20^{\circ}</math>, we obtain the relation
By writing the quotient for <math>\cos 20^{\circ}</math>, we obtain the relation
-
{{Displayed math||<math>\cos 20^{\circ} = \frac{16}{x}</math>}}
+
{{Abgesetzte Formel||<math>\cos 20^{\circ} = \frac{16}{x}</math>}}
and this gives
and this gives
-
{{Displayed math||<math>x = \frac{16}{\cos20^{\circ}}\quad ({}\approx 17\textrm{.}0)\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x = \frac{16}{\cos20^{\circ}}\quad ({}\approx 17\textrm{.}0)\,\textrm{.}</math>}}

Version vom 08:50, 22. Okt. 2008

The side marked x is the hypotenuse in the right-angled triangle and the side of length 16 is the adjacent to the angle of 20°.

By writing the quotient for \displaystyle \cos 20^{\circ}, we obtain the relation

\displaystyle \cos 20^{\circ} = \frac{16}{x}

and this gives

\displaystyle x = \frac{16}{\cos20^{\circ}}\quad ({}\approx 17\textrm{.}0)\,\textrm{.}