Lösung 4.1:3c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives | In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives | ||
| - | {{ | + | {{Abgesetzte Formel||<math>17^2 = 8^2 + x^2</math>}} | 
| or | or | ||
| - | {{ | + | {{Abgesetzte Formel||<math>x^2 = 17^2 - 8^2\,\textrm{.}</math>}} | 
| We get | We get | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt]  | x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt]  | ||
| &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} | &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} | ||
| \end{align}</math>}} | \end{align}</math>}} | ||
Version vom 08:47, 22. Okt. 2008
In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives
| \displaystyle 17^2 = 8^2 + x^2 | 
or
| \displaystyle x^2 = 17^2 - 8^2\,\textrm{.} | 
We get
| \displaystyle \begin{align} x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt] &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} \end{align} | 
 
		  