Lösung 4.1:3c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives | In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>17^2 = 8^2 + x^2</math>}} |
or | or | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2 = 17^2 - 8^2\,\textrm{.}</math>}} |
We get | We get | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt] | x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt] | ||
&= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} | &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} | ||
\end{align}</math>}} | \end{align}</math>}} |
Version vom 08:47, 22. Okt. 2008
In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives
\displaystyle 17^2 = 8^2 + x^2 |
or
\displaystyle x^2 = 17^2 - 8^2\,\textrm{.} |
We get
\displaystyle \begin{align}
x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt] &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} \end{align} |