Lösung 4.1:3b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 3: | Zeile 3: | ||
The side of length 13 is the hypotenuse in the triangle, and the Pythagorean theorem therefore gives us that | The side of length 13 is the hypotenuse in the triangle, and the Pythagorean theorem therefore gives us that | ||
- | {{ | + | {{Abgesetzte Formel||<math>13^{2} = 12^{2} + x^{2}\,,</math>}} |
i.e. | i.e. | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^{2}=13^{2}-12^{2}\,\textrm{.}</math>}} |
This means that | This means that | ||
- | {{ | + | {{Abgesetzte Formel||<math>x = \sqrt{13^{2}-12^{2}} = \sqrt{169-144} = \sqrt{25} = 5\,\textrm{.}</math>}} |
Version vom 08:47, 22. Okt. 2008
Because one of the angles in the triangle is 90°, we have a right-angled triangle and can use the Pythagorean theorem to set up a relation between the triangle's sides.
The side of length 13 is the hypotenuse in the triangle, and the Pythagorean theorem therefore gives us that
\displaystyle 13^{2} = 12^{2} + x^{2}\,, |
i.e.
\displaystyle x^{2}=13^{2}-12^{2}\,\textrm{.} |
This means that
\displaystyle x = \sqrt{13^{2}-12^{2}} = \sqrt{169-144} = \sqrt{25} = 5\,\textrm{.} |