Lösung 4.1:2
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| If we use the mnemonic that one turn is 360° or <math>2\pi</math> radians, we can derive a formula for the transformation from degrees to radians. Because | If we use the mnemonic that one turn is 360° or <math>2\pi</math> radians, we can derive a formula for the transformation from degrees to radians. Because | ||
| - | {{ | + | {{Abgesetzte Formel||<math>360\cdot 1^{\circ } = 2\pi\ \text{radians}</math>}} | 
| this gives | this gives | ||
| - | {{ | + | {{Abgesetzte Formel||<math>1^{\circ} = \frac{2\pi}{360}\ \text{radians} = \frac{\pi}{180}\ \text{radians.}</math>}} | 
| Now we can start transforming the angles: | Now we can start transforming the angles: | ||
Version vom 08:47, 22. Okt. 2008
If we use the mnemonic that one turn is 360° or \displaystyle 2\pi radians, we can derive a formula for the transformation from degrees to radians. Because
| \displaystyle 360\cdot 1^{\circ } = 2\pi\ \text{radians} | 
this gives
| \displaystyle 1^{\circ} = \frac{2\pi}{360}\ \text{radians} = \frac{\pi}{180}\ \text{radians.} | 
Now we can start transforming the angles:
| a) | \displaystyle 45^{\circ} = 45\cdot 1^{\circ} = 45\cdot\frac{\pi}{180}\ \text{radians} = \frac{\pi}{4}\ \text{radians,} | 
| b) | \displaystyle 135^{\circ } = 135\cdot 1^{\circ} = 135\cdot\frac{\pi}{180}\ \text{radians} = \frac{3\pi}{4}\ \text{radians,} | 
| c) | \displaystyle -63^{\circ} = -63\cdot 1^{\circ} = -63\cdot\frac{\pi}{180}\ \text{radians} = -\frac{7\pi}{20}\ \text{radians,} | 
| d) | \displaystyle 270^{\circ} = 270\cdot 1^{\circ} = 270\cdot\frac{\pi}{180}\ \text{radians} = \frac{3\pi}{2}\ \text{radians.} | 
 
		  