Lösung 3.4:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Regardless of what value ''x'' has, both sides of the equation are positive, because they are of the type "positive number raised to something". It is therefore possible to take the logarithm of both sides and, by using the log laws, to get ''x'' down from the exponents,
Regardless of what value ''x'' has, both sides of the equation are positive, because they are of the type "positive number raised to something". It is therefore possible to take the logarithm of both sides and, by using the log laws, to get ''x'' down from the exponents,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\text{LHS}
\text{LHS}
&= \ln\bigl( 3e^{x^{2}}\bigr)
&= \ln\bigl( 3e^{x^{2}}\bigr)
Zeile 13: Zeile 13:
If we collect the terms onto one side, the equation becomes
If we collect the terms onto one side, the equation becomes
-
{{Displayed math||<math>x^{2}-x\cdot \ln 2 + \ln 3 = 0</math>}}
+
{{Abgesetzte Formel||<math>x^{2}-x\cdot \ln 2 + \ln 3 = 0</math>}}
which is a standard second-order equation for which we complete the square
which is a standard second-order equation for which we complete the square
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\Bigl(x-\frac{1}{2}\ln 2\Bigr)^{2} - \Bigl(\frac{1}{2}\ln 2\Bigr)^{2} + \ln 3 = 0\,\textrm{,}\\[5pt]
\Bigl(x-\frac{1}{2}\ln 2\Bigr)^{2} - \Bigl(\frac{1}{2}\ln 2\Bigr)^{2} + \ln 3 = 0\,\textrm{,}\\[5pt]
\Bigl(x-\frac{1}{2}\ln 2\Bigr)^{2} = \Bigl(\frac{1}{2}\ln 2\Bigr)^{2} - \ln 3\,\textrm{.}
\Bigl(x-\frac{1}{2}\ln 2\Bigr)^{2} = \Bigl(\frac{1}{2}\ln 2\Bigr)^{2} - \ln 3\,\textrm{.}

Version vom 08:46, 22. Okt. 2008

Regardless of what value x has, both sides of the equation are positive, because they are of the type "positive number raised to something". It is therefore possible to take the logarithm of both sides and, by using the log laws, to get x down from the exponents,

\displaystyle \begin{align}

\text{LHS} &= \ln\bigl( 3e^{x^{2}}\bigr) = \ln 3 + \ln e^{x^2} = \ln 3 + x^2\ln e = \ln 3 + x^2\,\textrm{,}\\[5pt] \text{RHS} &= \ln 2^x = x\ln 2\,\textrm{.} \end{align}

If we collect the terms onto one side, the equation becomes

\displaystyle x^{2}-x\cdot \ln 2 + \ln 3 = 0

which is a standard second-order equation for which we complete the square

\displaystyle \begin{align}

\Bigl(x-\frac{1}{2}\ln 2\Bigr)^{2} - \Bigl(\frac{1}{2}\ln 2\Bigr)^{2} + \ln 3 = 0\,\textrm{,}\\[5pt] \Bigl(x-\frac{1}{2}\ln 2\Bigr)^{2} = \Bigl(\frac{1}{2}\ln 2\Bigr)^{2} - \ln 3\,\textrm{.} \end{align}

Now, we have to be cautious and remember that, because \displaystyle 2 < e < 3 and thus \displaystyle \ln 2 < 1 < \ln 3 we have that \displaystyle \tfrac{1}{4}(\ln 2)^2 < \ln 3 and the right-hand side is therefore negative. Since the square on the left-hand side cannot be negative, the equation has no solution.