Lösung 3.4:1c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 3: | Zeile 3: | ||
| First, we take logs of both sides, | First, we take logs of both sides, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\ln\bigl(3e^x\bigr) = \ln\bigl(7\cdot 2^x\bigr)\,\textrm{,}</math>}} | 
| and use the log laws to make <math>x</math> more accessible, | and use the log laws to make <math>x</math> more accessible, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\ln 3 + x\cdot \ln e = \ln 7 + x\cdot \ln 2\,\textrm{.}</math>}} | 
| Then, collect together the <math>x</math> terms on the left-hand side, | Then, collect together the <math>x</math> terms on the left-hand side, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>x(\ln e-\ln 2) = \ln 7-\ln 3\,\textrm{.}</math>}} | 
| The solution is now | The solution is now | ||
| - | {{ | + | {{Abgesetzte Formel||<math>x = \frac{\ln 7-\ln 3}{\ln e-\ln 2} = \frac{\ln 7-\ln 3}{1-\ln 2}\,\textrm{.}</math>}} | 
Version vom 08:45, 22. Okt. 2008
The equation has the same form as the equation in exercise b and we can therefore use the same strategy.
First, we take logs of both sides,
| \displaystyle \ln\bigl(3e^x\bigr) = \ln\bigl(7\cdot 2^x\bigr)\,\textrm{,} | 
and use the log laws to make \displaystyle x more accessible,
| \displaystyle \ln 3 + x\cdot \ln e = \ln 7 + x\cdot \ln 2\,\textrm{.} | 
Then, collect together the \displaystyle x terms on the left-hand side,
| \displaystyle x(\ln e-\ln 2) = \ln 7-\ln 3\,\textrm{.} | 
The solution is now
| \displaystyle x = \frac{\ln 7-\ln 3}{\ln e-\ln 2} = \frac{\ln 7-\ln 3}{1-\ln 2}\,\textrm{.} | 
 
		  