Lösung 3.3:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The logarithm <math>\lg 46</math> satisfies the relation
The logarithm <math>\lg 46</math> satisfies the relation
-
{{Displayed math||<math>10^{\lg 46} = 46</math>}}
+
{{Abgesetzte Formel||<math>10^{\lg 46} = 46</math>}}
and taking the natural logarithm of both sides, we obtain
and taking the natural logarithm of both sides, we obtain
-
{{Displayed math||<math>\ln 10^{\lg 46 } = \ln 46\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\ln 10^{\lg 46 } = \ln 46\,\textrm{.}</math>}}
If we use the logarithm law, <math>\lg a^b = b\cdot\lg a</math>, on the left-hand side, the equality becomes
If we use the logarithm law, <math>\lg a^b = b\cdot\lg a</math>, on the left-hand side, the equality becomes
-
{{Displayed math||<math>\lg 46\cdot\ln 10 = \ln 46\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\lg 46\cdot\ln 10 = \ln 46\,\textrm{.}</math>}}
This shows that
This shows that
-
{{Displayed math||<math>\lg 46 = \frac{\ln 46}{\ln 10} = \frac{3\textrm{.}828641\,\ldots}{2\textrm{.}302585\,\ldots} = 1\textrm{.}6627578\,\ldots</math>}}
+
{{Abgesetzte Formel||<math>\lg 46 = \frac{\ln 46}{\ln 10} = \frac{3\textrm{.}828641\,\ldots}{2\textrm{.}302585\,\ldots} = 1\textrm{.}6627578\,\ldots</math>}}
and the answer is 1.663.
and the answer is 1.663.

Version vom 08:45, 22. Okt. 2008

The logarithm \displaystyle \lg 46 satisfies the relation

\displaystyle 10^{\lg 46} = 46

and taking the natural logarithm of both sides, we obtain

\displaystyle \ln 10^{\lg 46 } = \ln 46\,\textrm{.}

If we use the logarithm law, \displaystyle \lg a^b = b\cdot\lg a, on the left-hand side, the equality becomes

\displaystyle \lg 46\cdot\ln 10 = \ln 46\,\textrm{.}

This shows that

\displaystyle \lg 46 = \frac{\ln 46}{\ln 10} = \frac{3\textrm{.}828641\,\ldots}{2\textrm{.}302585\,\ldots} = 1\textrm{.}6627578\,\ldots

and the answer is 1.663.


Note: In order to calculate the answer on the calculator, you press

4
  
6
  
LN
  
÷
  
1
  
0
  
LN
  
=