Lösung 3.3:6a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 3: | Zeile 3: | ||
If we go back to the definition of the logarithm, we see that <math>\log _{3}4</math> is that number which satisfies | If we go back to the definition of the logarithm, we see that <math>\log _{3}4</math> is that number which satisfies | ||
- | {{ | + | {{Abgesetzte Formel||<math>3^{\log _{3}4} = 4\,\textrm{.}</math>}} |
Now, take the natural logarithm of both sides, | Now, take the natural logarithm of both sides, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\ln 3^{\log _{3}4}=\ln 4\,\textrm{.}</math>}} |
Using the logarithm law, <math>\lg a^b = b\lg a</math>, the left-hand side can be written as <math>\log_{3}4\cdot\ln 3</math> and the relation is | Using the logarithm law, <math>\lg a^b = b\lg a</math>, the left-hand side can be written as <math>\log_{3}4\cdot\ln 3</math> and the relation is | ||
- | {{ | + | {{Abgesetzte Formel||<math>\log_{3}4\cdot \ln 3 = \ln 4\,\textrm{.}</math>}} |
Thus, after dividing by <math>\ln 3</math>, we have | Thus, after dividing by <math>\ln 3</math>, we have | ||
- | {{ | + | {{Abgesetzte Formel||<math>\log_{3}4 = \frac{\ln 4}{\ln 3} = \frac{1\textrm{.}386294\,\ldots}{1\textrm{.}098612\,\ldots} = 1\textrm{.}2618595\,\ldots</math>}} |
which gives 1.262 as the rounded-off answer. | which gives 1.262 as the rounded-off answer. |
Version vom 08:45, 22. Okt. 2008
The calculator does not have button for \displaystyle \log_{3}, but it does have one for the natural logarithm ln, so we need to rewrite \displaystyle \log_{3}4 in terms of ln.
If we go back to the definition of the logarithm, we see that \displaystyle \log _{3}4 is that number which satisfies
\displaystyle 3^{\log _{3}4} = 4\,\textrm{.} |
Now, take the natural logarithm of both sides,
\displaystyle \ln 3^{\log _{3}4}=\ln 4\,\textrm{.} |
Using the logarithm law, \displaystyle \lg a^b = b\lg a, the left-hand side can be written as \displaystyle \log_{3}4\cdot\ln 3 and the relation is
\displaystyle \log_{3}4\cdot \ln 3 = \ln 4\,\textrm{.} |
Thus, after dividing by \displaystyle \ln 3, we have
\displaystyle \log_{3}4 = \frac{\ln 4}{\ln 3} = \frac{1\textrm{.}386294\,\ldots}{1\textrm{.}098612\,\ldots} = 1\textrm{.}2618595\,\ldots |
which gives 1.262 as the rounded-off answer.
Note: On the calculator, the answer is obtained by pressing the buttons
|
|
|
|
|
|