Lösung 3.3:5e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The argument of ln can be written as
The argument of ln can be written as
-
{{Displayed math||<math>\frac{1}{e^{2}} = e^{-2}</math>}}
+
{{Abgesetzte Formel||<math>\frac{1}{e^{2}} = e^{-2}</math>}}
and with the logarithm law, <math>\ln a^{b} = b\ln a</math>, we obtain
and with the logarithm law, <math>\ln a^{b} = b\ln a</math>, we obtain
-
{{Displayed math||<math>\ln \frac{1}{e^{2}} = \ln e^{-2} = (-2)\cdot\ln e = (-2)\cdot 1 = -2\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\ln \frac{1}{e^{2}} = \ln e^{-2} = (-2)\cdot\ln e = (-2)\cdot 1 = -2\,\textrm{.}</math>}}

Version vom 08:44, 22. Okt. 2008

The argument of ln can be written as

\displaystyle \frac{1}{e^{2}} = e^{-2}

and with the logarithm law, \displaystyle \ln a^{b} = b\ln a, we obtain

\displaystyle \ln \frac{1}{e^{2}} = \ln e^{-2} = (-2)\cdot\ln e = (-2)\cdot 1 = -2\,\textrm{.}