Lösung 3.3:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
By using the logarithm laws,
By using the logarithm laws,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\ln a + \ln b &= \ln (a\cdot b)\,,\\[5pt]
\ln a + \ln b &= \ln (a\cdot b)\,,\\[5pt]
\ln a - \ln b &= \ln\frac{a}{b}\,,
\ln a - \ln b &= \ln\frac{a}{b}\,,
Zeile 8: Zeile 8:
we can collect together the terms into one logarithmic expression
we can collect together the terms into one logarithmic expression
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\ln 8 - \ln 4 - \ln 2 &= \ln 8 - (\ln 4 + \ln 2)\\[5pt]
\ln 8 - \ln 4 - \ln 2 &= \ln 8 - (\ln 4 + \ln 2)\\[5pt]
&= \ln 8 - \ln(4\cdot 2)\\[5pt]
&= \ln 8 - \ln(4\cdot 2)\\[5pt]

Version vom 08:44, 22. Okt. 2008

By using the logarithm laws,

\displaystyle \begin{align}

\ln a + \ln b &= \ln (a\cdot b)\,,\\[5pt] \ln a - \ln b &= \ln\frac{a}{b}\,, \end{align}

we can collect together the terms into one logarithmic expression

\displaystyle \begin{align}

\ln 8 - \ln 4 - \ln 2 &= \ln 8 - (\ln 4 + \ln 2)\\[5pt] &= \ln 8 - \ln(4\cdot 2)\\[5pt] &= \ln\frac{8}{4\cdot 2}\\[5pt] &= \ln 1\\[5pt] &= 0\,, \end{align}

where \displaystyle \ln 1 = 0, since \displaystyle e^{0}=1 (the equality \displaystyle a^{0}=1 holds for all \displaystyle a\ne 0).