Lösung 3.3:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| All three arguments of the logarithm can be written as powers of 3, | All three arguments of the logarithm can be written as powers of 3, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| 27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,,\\[5pt] | 27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,,\\[5pt] | ||
| \frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,,\\  | \frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,,\\  | ||
| Zeile 8: | Zeile 8: | ||
| and it is therefore appropriate to use base 3 when simplifying using the logarithms, even if we have the base 10-logarithm, lg, | and it is therefore appropriate to use base 3 when simplifying using the logarithms, even if we have the base 10-logarithm, lg, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| \lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9} | \lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9} | ||
| &= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt]  | &= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt]  | ||
Version vom 08:44, 22. Okt. 2008
All three arguments of the logarithm can be written as powers of 3,
| \displaystyle \begin{align} 27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,,\\[5pt] \frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,,\\ \end{align} | 
and it is therefore appropriate to use base 3 when simplifying using the logarithms, even if we have the base 10-logarithm, lg,
| \displaystyle \begin{align} \lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9} &= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt] &= \lg 3 + \frac{1}{2}\lg 3 + (-2)\cdot\lg 3\\[5pt] &= \Bigl(1+\frac{1}{2}-2\Bigr)\lg 3\\[5pt] &= -\frac{1}{2}\lg 3\,\textrm{.} \end{align} | 
This expression cannot be simplified any further.
 
		  