Lösung 3.3:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
All three arguments of the logarithm can be written as powers of 3,
All three arguments of the logarithm can be written as powers of 3,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,,\\[5pt]
27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,,\\[5pt]
\frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,,\\
\frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,,\\
Zeile 8: Zeile 8:
and it is therefore appropriate to use base 3 when simplifying using the logarithms, even if we have the base 10-logarithm, lg,
and it is therefore appropriate to use base 3 when simplifying using the logarithms, even if we have the base 10-logarithm, lg,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9}
\lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9}
&= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt]
&= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt]

Version vom 08:44, 22. Okt. 2008

All three arguments of the logarithm can be written as powers of 3,

\displaystyle \begin{align}

27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,,\\[5pt] \frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,,\\ \end{align}

and it is therefore appropriate to use base 3 when simplifying using the logarithms, even if we have the base 10-logarithm, lg,

\displaystyle \begin{align}

\lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9} &= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt] &= \lg 3 + \frac{1}{2}\lg 3 + (-2)\cdot\lg 3\\[5pt] &= \Bigl(1+\frac{1}{2}-2\Bigr)\lg 3\\[5pt] &= -\frac{1}{2}\lg 3\,\textrm{.} \end{align}

This expression cannot be simplified any further.