Lösung 3.3:3h

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Because <math>a^{2}\sqrt{a} = a^{2}a^{1/2} = a^{2+1/2} = a^{5/2}</math>, the logarithm law, <math>b\lg a = \lg a^b</math>, gives that
Because <math>a^{2}\sqrt{a} = a^{2}a^{1/2} = a^{2+1/2} = a^{5/2}</math>, the logarithm law, <math>b\lg a = \lg a^b</math>, gives that
-
{{Displayed math||<math>\log_{a} \bigl(a^{2}\sqrt{a}\,\bigr) = \log_{a}a^{5/2} = \frac{5}{2}\cdot\log_{a}a = \frac{5}{2}\cdot 1 = \frac{5}{2}\,,</math>}}
+
{{Abgesetzte Formel||<math>\log_{a} \bigl(a^{2}\sqrt{a}\,\bigr) = \log_{a}a^{5/2} = \frac{5}{2}\cdot\log_{a}a = \frac{5}{2}\cdot 1 = \frac{5}{2}\,,</math>}}
where we have used that <math>\log_{a}a = 1\,</math>.
where we have used that <math>\log_{a}a = 1\,</math>.

Version vom 08:43, 22. Okt. 2008

Because \displaystyle a^{2}\sqrt{a} = a^{2}a^{1/2} = a^{2+1/2} = a^{5/2}, the logarithm law, \displaystyle b\lg a = \lg a^b, gives that

\displaystyle \log_{a} \bigl(a^{2}\sqrt{a}\,\bigr) = \log_{a}a^{5/2} = \frac{5}{2}\cdot\log_{a}a = \frac{5}{2}\cdot 1 = \frac{5}{2}\,,

where we have used that \displaystyle \log_{a}a = 1\,.


Note: In this exercise, we assume, implicitly, that \displaystyle a > 0 and \displaystyle a\ne 1\,.