Lösung 3.3:3f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we write 4 and 16 as
If we write 4 and 16 as
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
4 &= 2\cdot 2 = 2^2\,,\\[5pt]
4 &= 2\cdot 2 = 2^2\,,\\[5pt]
16 &= 2\cdot 8 = 2\cdot 2\cdot 4 = 2\cdot 2\cdot 2\cdot 2 = 2^4\,,
16 &= 2\cdot 8 = 2\cdot 2\cdot 4 = 2\cdot 2\cdot 2\cdot 2 = 2^4\,,
Zeile 8: Zeile 8:
we obtain
we obtain
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\log_2 4 + \log_2\frac{1}{16}
\log_2 4 + \log_2\frac{1}{16}
&= \log_2 2^2 + \log_2\frac{1}{2^4}\\[5pt]
&= \log_2 2^2 + \log_2\frac{1}{2^4}\\[5pt]

Version vom 08:43, 22. Okt. 2008

If we write 4 and 16 as

\displaystyle \begin{align}

4 &= 2\cdot 2 = 2^2\,,\\[5pt] 16 &= 2\cdot 8 = 2\cdot 2\cdot 4 = 2\cdot 2\cdot 2\cdot 2 = 2^4\,, \end{align}

we obtain

\displaystyle \begin{align}

\log_2 4 + \log_2\frac{1}{16} &= \log_2 2^2 + \log_2\frac{1}{2^4}\\[5pt] &= \log_2 2^2 + \log_2 2^{-4}\\[5pt] &= 2\cdot\log_2 2 + (-4)\cdot\log_2 2\\[5pt] &= 2\cdot 1 + (-4)\cdot 1\\[5pt] &= -2\,\textrm{.} \end{align}