Lösung 3.3:3a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
By writing the argument <math>8</math> as <math>8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^3</math>, the logarithm law, <math>\lg a^b = b\lg a</math>, gives
By writing the argument <math>8</math> as <math>8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^3</math>, the logarithm law, <math>\lg a^b = b\lg a</math>, gives
-
{{Displayed math||<math>\log _{2}8 = \log _{2} 2^3 = 3\cdot\log _{2}2 = 3\cdot 1 = 3\,,</math>}}
+
{{Abgesetzte Formel||<math>\log _{2}8 = \log _{2} 2^3 = 3\cdot\log _{2}2 = 3\cdot 1 = 3\,,</math>}}
where we have used <math>\log _{2}2 = 1\,</math>.
where we have used <math>\log _{2}2 = 1\,</math>.

Version vom 08:42, 22. Okt. 2008

By writing the argument \displaystyle 8 as \displaystyle 8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^3, the logarithm law, \displaystyle \lg a^b = b\lg a, gives

\displaystyle \log _{2}8 = \log _{2} 2^3 = 3\cdot\log _{2}2 = 3\cdot 1 = 3\,,

where we have used \displaystyle \log _{2}2 = 1\,.