Lösung 3.3:2f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 9: | Zeile 9: | ||
In our case, we have | In our case, we have | ||
- | {{ | + | {{Abgesetzte Formel||<math>\lg 10^{3} = 3\cdot \lg 10 = 3\cdot 1 = 3\,\textrm{.}</math>}} |
Version vom 08:42, 22. Okt. 2008
Instead of always going back to the definition of the logarithm, it is better to learn to work with the log laws,
- \displaystyle \ \lg (ab) = \lg a + \lg b
- \displaystyle \ \lg a^{b} = b\lg a
and to simplify expressions first. By working in this way, one only needs, in principle, to learn that \displaystyle \lg 10 = 1\,.
In our case, we have
\displaystyle \lg 10^{3} = 3\cdot \lg 10 = 3\cdot 1 = 3\,\textrm{.} |