Lösung 3.3:2c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| Because <math>\mathop{\text{lg}} 0\textrm{.}001</math> is defined as the exponent that should stand in the coloured box in the equality | Because <math>\mathop{\text{lg}} 0\textrm{.}001</math> is defined as the exponent that should stand in the coloured box in the equality | ||
| - | {{ | + | {{Abgesetzte Formel||<math>10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}001</math>}} | 
| and we have that | and we have that | ||
| - | {{ | + | {{Abgesetzte Formel||<math>10^{-3} = 0\textrm{.}001\,,</math>}} | 
| thus <math>\mathop{\text{lg}} 0\textrm{.}0001 = -3\,</math>. | thus <math>\mathop{\text{lg}} 0\textrm{.}0001 = -3\,</math>. | ||
Version vom 08:41, 22. Okt. 2008
Because \displaystyle \mathop{\text{lg}} 0\textrm{.}001 is defined as the exponent that should stand in the coloured box in the equality
| \displaystyle 10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}001 | 
and we have that
| \displaystyle 10^{-3} = 0\textrm{.}001\,, | 
thus \displaystyle \mathop{\text{lg}} 0\textrm{.}0001 = -3\,.
 
		  