Lösung 3.3:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Because <math>\mathop{\text{lg}} 0\textrm{.}001</math> is defined as the exponent that should stand in the coloured box in the equality
Because <math>\mathop{\text{lg}} 0\textrm{.}001</math> is defined as the exponent that should stand in the coloured box in the equality
-
{{Displayed math||<math>10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}001</math>}}
+
{{Abgesetzte Formel||<math>10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}001</math>}}
and we have that
and we have that
-
{{Displayed math||<math>10^{-3} = 0\textrm{.}001\,,</math>}}
+
{{Abgesetzte Formel||<math>10^{-3} = 0\textrm{.}001\,,</math>}}
thus <math>\mathop{\text{lg}} 0\textrm{.}0001 = -3\,</math>.
thus <math>\mathop{\text{lg}} 0\textrm{.}0001 = -3\,</math>.

Version vom 08:41, 22. Okt. 2008

Because \displaystyle \mathop{\text{lg}} 0\textrm{.}001 is defined as the exponent that should stand in the coloured box in the equality

\displaystyle 10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}001

and we have that

\displaystyle 10^{-3} = 0\textrm{.}001\,,

thus \displaystyle \mathop{\text{lg}} 0\textrm{.}0001 = -3\,.