Lösung 3.3:2a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The logarithm <math>\mathop{\text{lg}} 0\textrm{.}1</math> is defined as that number which should stand in the coloured box in order that the equality
The logarithm <math>\mathop{\text{lg}} 0\textrm{.}1</math> is defined as that number which should stand in the coloured box in order that the equality
-
{{Displayed math||<math>10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}1</math>}}
+
{{Abgesetzte Formel||<math>10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}1</math>}}
should hold. In this case, we see that
should hold. In this case, we see that
-
{{Displayed math||<math>10^{-1} = 0\textrm{.}1</math>}}
+
{{Abgesetzte Formel||<math>10^{-1} = 0\textrm{.}1</math>}}
and therefore <math>\mathop{\text{lg}} 0\textrm{.}1 = -1\,</math>.
and therefore <math>\mathop{\text{lg}} 0\textrm{.}1 = -1\,</math>.

Version vom 08:41, 22. Okt. 2008

The logarithm \displaystyle \mathop{\text{lg}} 0\textrm{.}1 is defined as that number which should stand in the coloured box in order that the equality

\displaystyle 10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}1

should hold. In this case, we see that

\displaystyle 10^{-1} = 0\textrm{.}1

and therefore \displaystyle \mathop{\text{lg}} 0\textrm{.}1 = -1\,.