Lösung 3.3:2a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The logarithm <math>\mathop{\text{lg}} 0\textrm{.}1</math> is defined as that number which should stand in the coloured box in order that the equality | The logarithm <math>\mathop{\text{lg}} 0\textrm{.}1</math> is defined as that number which should stand in the coloured box in order that the equality | ||
- | {{ | + | {{Abgesetzte Formel||<math>10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}1</math>}} |
should hold. In this case, we see that | should hold. In this case, we see that | ||
- | {{ | + | {{Abgesetzte Formel||<math>10^{-1} = 0\textrm{.}1</math>}} |
and therefore <math>\mathop{\text{lg}} 0\textrm{.}1 = -1\,</math>. | and therefore <math>\mathop{\text{lg}} 0\textrm{.}1 = -1\,</math>. |
Version vom 08:41, 22. Okt. 2008
The logarithm \displaystyle \mathop{\text{lg}} 0\textrm{.}1 is defined as that number which should stand in the coloured box in order that the equality
\displaystyle 10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}1 |
should hold. In this case, we see that
\displaystyle 10^{-1} = 0\textrm{.}1 |
and therefore \displaystyle \mathop{\text{lg}} 0\textrm{.}1 = -1\,.