Lösung 3.2:5
Aus Online Mathematik Brückenkurs 1
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
After squaring both sides, we obtain the equation | After squaring both sides, we obtain the equation | ||
- | {{ | + | {{Abgesetzte Formel||<math>3x-2 = (2-x)^2</math>|(*)}} |
and if we expand the right-hand side and then collect the terms, we get | and if we expand the right-hand side and then collect the terms, we get | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^{2}-7x+6=0\,\textrm{.}</math>}} |
Completing the square of the left-hand side, we obtain | Completing the square of the left-hand side, we obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
x^{2}-7x+6 | x^{2}-7x+6 | ||
&= \Bigl(x-\frac{7}{2}\Bigr)^2 - \Bigl(\frac{7}{2}\Bigr)^2+6\\[5pt] | &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \Bigl(\frac{7}{2}\Bigr)^2+6\\[5pt] | ||
Zeile 18: | Zeile 18: | ||
which means that the equation can be written as | which means that the equation can be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\Bigl(x-\frac{7}{2}\Bigr)^2 = \frac{25}{4}</math>}} |
and the solutions are therefore | and the solutions are therefore |
Version vom 08:41, 22. Okt. 2008
After squaring both sides, we obtain the equation
\displaystyle 3x-2 = (2-x)^2 | (*) |
and if we expand the right-hand side and then collect the terms, we get
\displaystyle x^{2}-7x+6=0\,\textrm{.} |
Completing the square of the left-hand side, we obtain
\displaystyle \begin{align}
x^{2}-7x+6 &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \Bigl(\frac{7}{2}\Bigr)^2+6\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{49}{4} + \frac{24}{4}\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{25}{4} \end{align} |
which means that the equation can be written as
\displaystyle \Bigl(x-\frac{7}{2}\Bigr)^2 = \frac{25}{4} |
and the solutions are therefore
- \displaystyle x = \frac{7}{2} + \sqrt{\frac{25}{4}} = \frac{7}{2} + \frac{5}{2} = \frac{12}{2} = 6\,,
- \displaystyle x = \frac{7}{2} - \sqrt{\frac{25}{4}} = \frac{7}{2} - \frac{5}{2} = \frac{2}{2} = 1\,\textrm{.}
Substituting \displaystyle x=1 and \displaystyle x=6 into the quadratic equation (*) shows that we have solved the equation correctly.
- x = 1: \displaystyle \ \text{LHS} = 3\cdot 1-2 = 1\ and \displaystyle \ \text{RHS} = (2-1)^2 = 1
- x = 6: \displaystyle \ \text{LHS} = 3\cdot 6-2 = 16\ and \displaystyle \ \text{RHS} = (2-6)^2 = 16
Finally, we need to sort away possible spurious roots to the root equation by verifying the solutions.
- x = 1: \displaystyle \ \text{LHS} = \sqrt{3\cdot 1-2} = 1\ and \displaystyle \ \text{RHS} = 2-1 = 1
- x = 6: \displaystyle \ \text{LHS} = \sqrt{3\cdot 6-2} = 4\ and \displaystyle \ \text{RHS} = 2-6 = -4
This shows that the root equation has the solution \displaystyle x=1\,.