Lösung 3.2:4

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Square both sides of the equation so that the root sign disappears,
Square both sides of the equation so that the root sign disappears,
-
{{Displayed math||<math>1-x = (2-x)^2\quad \Leftrightarrow \quad 1-x = 4-4x+x^2</math>}}
+
{{Abgesetzte Formel||<math>1-x = (2-x)^2\quad \Leftrightarrow \quad 1-x = 4-4x+x^2</math>}}
and then solve the resulting second-order equation by completing the square,
and then solve the resulting second-order equation by completing the square,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
x^{2}-3x+3 &= 0\,,\\[5pt]
x^{2}-3x+3 &= 0\,,\\[5pt]
\Bigl(x-\frac{3}{2}\Bigr)^{2} - \Bigl(\frac{3}{2}\Bigr)^{2} + 3 &= 0\,,\\[5pt]
\Bigl(x-\frac{3}{2}\Bigr)^{2} - \Bigl(\frac{3}{2}\Bigr)^{2} + 3 &= 0\,,\\[5pt]

Version vom 08:40, 22. Okt. 2008

Square both sides of the equation so that the root sign disappears,

\displaystyle 1-x = (2-x)^2\quad \Leftrightarrow \quad 1-x = 4-4x+x^2

and then solve the resulting second-order equation by completing the square,

\displaystyle \begin{align}

x^{2}-3x+3 &= 0\,,\\[5pt] \Bigl(x-\frac{3}{2}\Bigr)^{2} - \Bigl(\frac{3}{2}\Bigr)^{2} + 3 &= 0\,,\\[5pt] \Bigl(x-\frac{3}{2}\Bigr)^{2} - \frac{9}{4} + \frac{12}{4} &= 0\,,\\[5pt] \Bigl(x-\frac{3}{2}\Bigr)^{2} + \frac{3}{4} &= 0\,\textrm{.} \end{align}

As can be seen, the second-order equation does not have any solutions (the left-hand side is always greater than or equal to 3/4, regardless of how x is chosen) so, the original root equation does not have any solutions.