Lösung 3.1:7b
Aus Online Mathematik Brückenkurs 1
| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 2: | Zeile 2: | ||
| <math>\sqrt{7}+\sqrt{5}</math>, and see what it leads to, | <math>\sqrt{7}+\sqrt{5}</math>, and see what it leads to, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}} | \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}} | ||
| &= \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}\cdot \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}\\[10pt] | &= \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}\cdot \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}\\[10pt] | ||
Version vom 08:39, 22. Okt. 2008
We multiply the top and bottom of the fraction by the conjugate of the denominator, \displaystyle \sqrt{7}+\sqrt{5}, and see what it leads to,
| \displaystyle \begin{align} \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}} &= \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}\cdot \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}\\[10pt] &= \frac{(5\sqrt{7}-7\sqrt{5})(\sqrt{7}+\sqrt{5})}{(\sqrt{7})^{2}-(\sqrt{5})^{2}}\\[10pt] &= \frac{5\sqrt{7}\cdot\sqrt{7}+5\sqrt{5}\cdot\sqrt{7}-7\sqrt{5}\cdot\sqrt{7}-7\sqrt{5}\cdot\sqrt{5}}{7-5}\\[10pt] &= \frac{5(\sqrt{7})^{2}+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7(\sqrt{5})^{2}}{2}\\[10pt] &= \frac{5\cdot 7+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\cdot 5}{2}\\[10pt] &= \frac{5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}}{2}\\[10pt] &= \frac{(5-7)\sqrt{5}\sqrt{7}}{2}\\[10pt] &= \frac{-2\sqrt{5\cdot 7}}{2}\\[10pt] &= -\sqrt{35}\,\textrm{.} \end{align} | 
 
		  