Lösung 3.1:7a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
First, we multiply the tops and bottoms of the two terms by the conjugate of their respective denominators, so that there are no root signs left in the denominators,
First, we multiply the tops and bottoms of the two terms by the conjugate of their respective denominators, so that there are no root signs left in the denominators,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{1}{\sqrt{6}-\sqrt{5}}
\frac{1}{\sqrt{6}-\sqrt{5}}
&= \frac{1}{\sqrt{6}-\sqrt{5}}\cdot \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}\\[5pt]
&= \frac{1}{\sqrt{6}-\sqrt{5}}\cdot \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}\\[5pt]
Zeile 16: Zeile 16:
Now, we can subtract the terms and simplify the result,
Now, we can subtract the terms and simplify the result,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{1}{\sqrt{7}-\sqrt{6}}
\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{1}{\sqrt{7}-\sqrt{6}}
&= \sqrt{6}+\sqrt{5}-(\sqrt{7}+\sqrt{6})\\[5pt]
&= \sqrt{6}+\sqrt{5}-(\sqrt{7}+\sqrt{6})\\[5pt]

Version vom 08:39, 22. Okt. 2008

First, we multiply the tops and bottoms of the two terms by the conjugate of their respective denominators, so that there are no root signs left in the denominators,

\displaystyle \begin{align}

\frac{1}{\sqrt{6}-\sqrt{5}} &= \frac{1}{\sqrt{6}-\sqrt{5}}\cdot \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}\\[5pt] &= \frac{\sqrt{6}+\sqrt{5}}{(\sqrt{6})^{2}-(\sqrt{5})^{2}}\\[5pt] &= \frac{\sqrt{6}+\sqrt{5}}{6-5}\\[5pt] &= \sqrt{6}+\sqrt{5}\,,\\[10pt] \frac{1}{\sqrt{7}-\sqrt{6}} &= \frac{1}{\sqrt{7}-\sqrt{6}}\cdot \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}\\[5pt] &= \frac{\sqrt{7}+\sqrt{6}}{(\sqrt{7})^{2}-(\sqrt{6})^{2}}\\[5pt] &= \frac{\sqrt{7}+\sqrt{6}}{7-6}\\[5pt] &= \sqrt{7}+\sqrt{6}\,\textrm{.} \end{align}

Now, we can subtract the terms and simplify the result,

\displaystyle \begin{align}

\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{1}{\sqrt{7}-\sqrt{6}} &= \sqrt{6}+\sqrt{5}-(\sqrt{7}+\sqrt{6})\\[5pt] &= \sqrt{6}+\sqrt{5}-\sqrt{7}-\sqrt{6}\\[5pt] &= \sqrt{5}-\sqrt{7}\,\textrm{.} \end{align}