Lösung 3.1:6d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The problem with this expression is that the denominator contains three roots and so there is no simple way to get rid of all root signs at once; rather, we need to work step by step. In the first step, we view the numerator as <math>(\sqrt{2}+\sqrt{3})+\sqrt{6}</math> and multiply the top and bottom of the fraction by the conjugate-like expression <math>(\sqrt{2}+\sqrt{3})-\sqrt{6}\,</math>. Then, at least <math>\sqrt{6}</math> will be squared away using the formula for the difference of two squares
The problem with this expression is that the denominator contains three roots and so there is no simple way to get rid of all root signs at once; rather, we need to work step by step. In the first step, we view the numerator as <math>(\sqrt{2}+\sqrt{3})+\sqrt{6}</math> and multiply the top and bottom of the fraction by the conjugate-like expression <math>(\sqrt{2}+\sqrt{3})-\sqrt{6}\,</math>. Then, at least <math>\sqrt{6}</math> will be squared away using the formula for the difference of two squares
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{1}{(\sqrt{2}+\sqrt{3})+\sqrt{6}}\cdot \frac{(\sqrt{2}+\sqrt{3})-\sqrt{6}}{(\sqrt{2}+\sqrt{3})-\sqrt{6}}
\frac{1}{(\sqrt{2}+\sqrt{3})+\sqrt{6}}\cdot \frac{(\sqrt{2}+\sqrt{3})-\sqrt{6}}{(\sqrt{2}+\sqrt{3})-\sqrt{6}}
&= \frac{(\sqrt{2}+\sqrt{3})-\sqrt{6}}{(\sqrt{2}+\sqrt{3})^{2}-(\sqrt{6})^{2}}\\[10pt]
&= \frac{(\sqrt{2}+\sqrt{3})-\sqrt{6}}{(\sqrt{2}+\sqrt{3})^{2}-(\sqrt{6})^{2}}\\[10pt]
Zeile 9: Zeile 9:
We expand the remaining quadratic, <math>(\sqrt{2}+\sqrt{3})^{2}</math>, using the formula for the difference of two squares,
We expand the remaining quadratic, <math>(\sqrt{2}+\sqrt{3})^{2}</math>, using the formula for the difference of two squares,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{(\sqrt{2}+\sqrt{3})-\sqrt{6}}{(\sqrt{2}+\sqrt{3})^{2}-6}
\frac{(\sqrt{2}+\sqrt{3})-\sqrt{6}}{(\sqrt{2}+\sqrt{3})^{2}-6}
&= \frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{(\sqrt{2})^{2}+2\sqrt{2}\sqrt{3}+(\sqrt{3})^{2}-6}\\[10pt]
&= \frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{(\sqrt{2})^{2}+2\sqrt{2}\sqrt{3}+(\sqrt{3})^{2}-6}\\[10pt]
Zeile 18: Zeile 18:
This expression has only a root sign in the denominator and we can then complete the calculation by multiplying top and bottom by the conjugate <math>2\sqrt{6}+1</math>,
This expression has only a root sign in the denominator and we can then complete the calculation by multiplying top and bottom by the conjugate <math>2\sqrt{6}+1</math>,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{2\sqrt{6}-1}
\frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{2\sqrt{6}-1}
&= \frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{2\sqrt{6}-1}\cdot\frac{2\sqrt{6}+1}{2\sqrt{6}+1}\\[10pt]
&= \frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{2\sqrt{6}-1}\cdot\frac{2\sqrt{6}+1}{2\sqrt{6}+1}\\[10pt]

Version vom 08:39, 22. Okt. 2008

The problem with this expression is that the denominator contains three roots and so there is no simple way to get rid of all root signs at once; rather, we need to work step by step. In the first step, we view the numerator as \displaystyle (\sqrt{2}+\sqrt{3})+\sqrt{6} and multiply the top and bottom of the fraction by the conjugate-like expression \displaystyle (\sqrt{2}+\sqrt{3})-\sqrt{6}\,. Then, at least \displaystyle \sqrt{6} will be squared away using the formula for the difference of two squares

\displaystyle \begin{align}

\frac{1}{(\sqrt{2}+\sqrt{3})+\sqrt{6}}\cdot \frac{(\sqrt{2}+\sqrt{3})-\sqrt{6}}{(\sqrt{2}+\sqrt{3})-\sqrt{6}} &= \frac{(\sqrt{2}+\sqrt{3})-\sqrt{6}}{(\sqrt{2}+\sqrt{3})^{2}-(\sqrt{6})^{2}}\\[10pt] &= \frac{(\sqrt{2}+\sqrt{3})-\sqrt{6}}{(\sqrt{2}+\sqrt{3})^{2}-6}\,\textrm{.} \end{align}

We expand the remaining quadratic, \displaystyle (\sqrt{2}+\sqrt{3})^{2}, using the formula for the difference of two squares,

\displaystyle \begin{align}

\frac{(\sqrt{2}+\sqrt{3})-\sqrt{6}}{(\sqrt{2}+\sqrt{3})^{2}-6} &= \frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{(\sqrt{2})^{2}+2\sqrt{2}\sqrt{3}+(\sqrt{3})^{2}-6}\\[10pt] &= \frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{2+2\sqrt{2\cdot 3}+3-6}\\[10pt] &= \frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{2\sqrt{6}-1}\,\textrm{.} \end{align}

This expression has only a root sign in the denominator and we can then complete the calculation by multiplying top and bottom by the conjugate \displaystyle 2\sqrt{6}+1,

\displaystyle \begin{align}

\frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{2\sqrt{6}-1} &= \frac{\sqrt{2}+\sqrt{3}-\sqrt{6}}{2\sqrt{6}-1}\cdot\frac{2\sqrt{6}+1}{2\sqrt{6}+1}\\[10pt] &= \frac{(\sqrt{2}+\sqrt{3}-\sqrt{6})(2\sqrt{6}+1)}{(2\sqrt{6})^{2}-1^{2}}\\[10pt] &= \frac{\sqrt{2}\cdot 2\sqrt{6}+\sqrt{2}\cdot 1+\sqrt{3}\cdot 2\sqrt{6}+\sqrt{3}\cdot 1-\sqrt{6}\cdot 2\sqrt{6}-\sqrt{6}\cdot 1}{2^{2}(\sqrt{6})^{2}-1^{2}}\\[10pt] &= \frac{\sqrt{2}\cdot 2\sqrt{2\cdot 3}+\sqrt{2}+\sqrt{3}\cdot 2\sqrt{2\cdot 3}+\sqrt{3}-2(\sqrt{6})^{2}-\sqrt{6}}{4\cdot 6-1^{2}}\\[10pt] &= \frac{2(\sqrt{2})^{2}\sqrt{3}+\sqrt{2}+2(\sqrt{3})^{2}\sqrt{2}+\sqrt{3}-2\cdot 6-\sqrt{6}}{24-1}\\[10pt] &= \frac{2\cdot 2\cdot \sqrt{3}+\sqrt{2}+2\cdot 3\cdot \sqrt{2}+\sqrt{3}-12-\sqrt{6}}{23}\\[10pt] &= \frac{(1+2\cdot 3)\sqrt{2}+(2\cdot 2+1)\sqrt{3}-12-\sqrt{6}}{23}\\[10pt] &= \frac{7\sqrt{2}+5\sqrt{3}-\sqrt{6}-12}{23}\,\textrm{.} \end{align}