Lösung 3.1:5b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			K   | 
				K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel))  | 
			||
| Zeile 1: | Zeile 1: | ||
In order to eliminate <math>\sqrt[3]{7} = 7^{1/3}</math> from the denominator, we can multiply the top and bottom of the fraction by <math>7^{2/3}</math>. The denominator becomes <math>7^{1/3}\cdot 7^{2/3} = 7^{1/3+2/3} = 7^1 = 7</math> and we get   | In order to eliminate <math>\sqrt[3]{7} = 7^{1/3}</math> from the denominator, we can multiply the top and bottom of the fraction by <math>7^{2/3}</math>. The denominator becomes <math>7^{1/3}\cdot 7^{2/3} = 7^{1/3+2/3} = 7^1 = 7</math> and we get   | ||
| - | {{  | + | {{Abgesetzte Formel||<math>\frac{1}{\sqrt[3]{7}} = \frac{1}{7^{1/3}} = \frac{1}{7^{1/3}}\cdot \frac{7^{2/3}}{7^{2/3}} = \frac{7^{2/3}}{7}\,\textrm{.}</math>}}  | 
Version vom 08:38, 22. Okt. 2008
In order to eliminate \displaystyle \sqrt[3]{7} = 7^{1/3} from the denominator, we can multiply the top and bottom of the fraction by \displaystyle 7^{2/3}. The denominator becomes \displaystyle 7^{1/3}\cdot 7^{2/3} = 7^{1/3+2/3} = 7^1 = 7 and we get
| \displaystyle \frac{1}{\sqrt[3]{7}} = \frac{1}{7^{1/3}} = \frac{1}{7^{1/3}}\cdot \frac{7^{2/3}}{7^{2/3}} = \frac{7^{2/3}}{7}\,\textrm{.} | 
