Lösung 3.1:3c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We start by looking at one part of the expression <math>\sqrt{16}</math>. This subexpression can be simplified since <math>16 = 4\cdot 4 = 4^{2}</math> which gives that <math>\sqrt{16} = \sqrt{4^{2}} = 4</math> and the whole expression becomes
We start by looking at one part of the expression <math>\sqrt{16}</math>. This subexpression can be simplified since <math>16 = 4\cdot 4 = 4^{2}</math> which gives that <math>\sqrt{16} = \sqrt{4^{2}} = 4</math> and the whole expression becomes
-
{{Displayed math||<math>\sqrt{16+\sqrt{16}} = \sqrt{16+4} = \sqrt{20}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\sqrt{16+\sqrt{16}} = \sqrt{16+4} = \sqrt{20}\,\textrm{.}</math>}}
Can <math>\sqrt{20}</math> be simplified? In order to answer this, we split 20 up into integer factors,
Can <math>\sqrt{20}</math> be simplified? In order to answer this, we split 20 up into integer factors,
-
{{Displayed math||<math>20 = 2\cdot 10 = 2\cdot 2\cdot 5 = 2^{2}\cdot 5</math>}}
+
{{Abgesetzte Formel||<math>20 = 2\cdot 10 = 2\cdot 2\cdot 5 = 2^{2}\cdot 5</math>}}
and see that 20 contains the square <math>2^2</math> as a factor and can therefore be taken outside the root sign,
and see that 20 contains the square <math>2^2</math> as a factor and can therefore be taken outside the root sign,
-
{{Displayed math||<math>\sqrt{20} = \sqrt{2^{2}\centerdot 5} = 2\sqrt{5}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\sqrt{20} = \sqrt{2^{2}\centerdot 5} = 2\sqrt{5}\,\textrm{.}</math>}}

Version vom 08:37, 22. Okt. 2008

We start by looking at one part of the expression \displaystyle \sqrt{16}. This subexpression can be simplified since \displaystyle 16 = 4\cdot 4 = 4^{2} which gives that \displaystyle \sqrt{16} = \sqrt{4^{2}} = 4 and the whole expression becomes

\displaystyle \sqrt{16+\sqrt{16}} = \sqrt{16+4} = \sqrt{20}\,\textrm{.}

Can \displaystyle \sqrt{20} be simplified? In order to answer this, we split 20 up into integer factors,

\displaystyle 20 = 2\cdot 10 = 2\cdot 2\cdot 5 = 2^{2}\cdot 5

and see that 20 contains the square \displaystyle 2^2 as a factor and can therefore be taken outside the root sign,

\displaystyle \sqrt{20} = \sqrt{2^{2}\centerdot 5} = 2\sqrt{5}\,\textrm{.}