Lösung 2.3:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
By completing the square, the second degree polynomial can be rewritten as a quadratic plus a constant, and then it is relatively straightforward to read off the expression's minimum value,
By completing the square, the second degree polynomial can be rewritten as a quadratic plus a constant, and then it is relatively straightforward to read off the expression's minimum value,
-
{{Displayed math||<math>x^{2}-4x+2 = (x-2)^{2}-2^{2}+2 = (x-2)^{2}-2\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x^{2}-4x+2 = (x-2)^{2}-2^{2}+2 = (x-2)^{2}-2\,\textrm{.}</math>}}
Because <math>(x-2)^{2}</math> is a quadratic, this term is always larger than or equal to 0 and the whole expression is therefore at least equal to -2, which occurs when <math>x-2=0</math> and the quadratic is zero, i.e. <math>x=2</math>.
Because <math>(x-2)^{2}</math> is a quadratic, this term is always larger than or equal to 0 and the whole expression is therefore at least equal to -2, which occurs when <math>x-2=0</math> and the quadratic is zero, i.e. <math>x=2</math>.

Version vom 08:34, 22. Okt. 2008

By completing the square, the second degree polynomial can be rewritten as a quadratic plus a constant, and then it is relatively straightforward to read off the expression's minimum value,

\displaystyle x^{2}-4x+2 = (x-2)^{2}-2^{2}+2 = (x-2)^{2}-2\,\textrm{.}

Because \displaystyle (x-2)^{2} is a quadratic, this term is always larger than or equal to 0 and the whole expression is therefore at least equal to -2, which occurs when \displaystyle x-2=0 and the quadratic is zero, i.e. \displaystyle x=2.