Lösung 2.3:2a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 3: Zeile 3:
By completing the square, the left-hand side becomes
By completing the square, the left-hand side becomes
-
{{Displayed math||<math>\underline{x^{2}-4x\vphantom{()}}+3 = \underline{(x-2)^{2}-2^{2}}+3 = (x-2)^{2}-1\,\textrm{,}</math>}}
+
{{Abgesetzte Formel||<math>\underline{x^{2}-4x\vphantom{()}}+3 = \underline{(x-2)^{2}-2^{2}}+3 = (x-2)^{2}-1\,\textrm{,}</math>}}
where the underlined part on the right-hand side is the actual completed square. The equation can therefore be written as
where the underlined part on the right-hand side is the actual completed square. The equation can therefore be written as
-
{{Displayed math||<math>(x-2)^{2}-1 = 0</math>}}
+
{{Abgesetzte Formel||<math>(x-2)^{2}-1 = 0</math>}}
which we solve by moving the "1" on the right-hand side and taking the square root. This gives the solutions:
which we solve by moving the "1" on the right-hand side and taking the square root. This gives the solutions:

Version vom 08:31, 22. Okt. 2008

We solve the second order equation by combining together the x²- and x-terms by completing the square to obtain a quadratic term, and then solve the resulting equation by taking the root.

By completing the square, the left-hand side becomes

\displaystyle \underline{x^{2}-4x\vphantom{()}}+3 = \underline{(x-2)^{2}-2^{2}}+3 = (x-2)^{2}-1\,\textrm{,}

where the underlined part on the right-hand side is the actual completed square. The equation can therefore be written as

\displaystyle (x-2)^{2}-1 = 0

which we solve by moving the "1" on the right-hand side and taking the square root. This gives the solutions:

  • \displaystyle x-2=\sqrt{1}=1\,,\ i.e. \displaystyle x=2+1=3\,,
  • \displaystyle x-2=-\sqrt{1}=-1\,,\ i.e. \displaystyle x=2-1=1\,\textrm{.}


Because it is easy to make a mistake, we check the answer by substituting \displaystyle x=1 and \displaystyle x=3 into the original equation:

  • x = 1: \displaystyle \ \text{LHS} = 1^{2}-4\cdot 1+3 = 1-4+3 = 0 = \text{RHS,}
  • x = 3: \displaystyle \ \text{LHS} = 3^{2}-4\cdot 3+3 = 9-12+3 = 0 = \text{RHS.}