Lösung 2.3:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We apply the standard formula for completing the square, | We apply the standard formula for completing the square, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^{2}+ax = \Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{,}</math>}} |
on our expression and this gives | on our expression and this gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^{2}+5x = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}\,\textrm{.}</math>}} |
The whole expression becomes | The whole expression becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
x^{2}+5x+3 | x^{2}+5x+3 | ||
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}+3\\[5pt] | &= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}+3\\[5pt] | ||
Zeile 19: | Zeile 19: | ||
A quick check shows that we have calculated correctly | A quick check shows that we have calculated correctly | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4} | \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4} | ||
&= x^{2} + 2\cdot\frac{5}{2}\cdot x + \Bigl(\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\\[5pt] | &= x^{2} + 2\cdot\frac{5}{2}\cdot x + \Bigl(\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\\[5pt] |
Version vom 08:31, 22. Okt. 2008
We apply the standard formula for completing the square,
\displaystyle x^{2}+ax = \Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{,} |
on our expression and this gives
\displaystyle x^{2}+5x = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}\,\textrm{.} |
The whole expression becomes
\displaystyle \begin{align}
x^{2}+5x+3 &= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}+3\\[5pt] &= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{12}{4}\\[5pt] &= \Bigl(x+\frac{5}{2}\Bigr)^{2} + \frac{12-25}{4}\\[5pt] &= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\,\textrm{.} \end{align} |
A quick check shows that we have calculated correctly
\displaystyle \begin{align}
\Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4} &= x^{2} + 2\cdot\frac{5}{2}\cdot x + \Bigl(\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\\[5pt] &= x^{2} + 5x + \frac{25}{4} - \frac{13}{4}\\[5pt] &= x^{2} + 5x + \frac{12}{4}\\[5pt] &= x^{2}+5x+3\,\textrm{.} \end{align} |