Lösung 2.3:1c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
|||
Zeile 2: | Zeile 2: | ||
<math>2x-x^{2}</math>, which we also can write as <math>-(x^{2}-2x)</math>. If we neglect the minus sign, we can complete square of the expression <math>2x-x^{2}</math> by using the formula | <math>2x-x^{2}</math>, which we also can write as <math>-(x^{2}-2x)</math>. If we neglect the minus sign, we can complete square of the expression <math>2x-x^{2}</math> by using the formula | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^{2}-ax = \Bigl(x-\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}</math>}} |
and we obtain | and we obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^{2}-2x = \Bigl(x-\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x-1)^{2}-1\,\textrm{.}</math>}} |
This means that | This means that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
5+2x-x^{2} &= 5-(x^{2}-2x) = 5-\bigl((x-1)^{2}-1\bigr)\\[5pt] | 5+2x-x^{2} &= 5-(x^{2}-2x) = 5-\bigl((x-1)^{2}-1\bigr)\\[5pt] | ||
&= 5-(x-1)^{2}+1 = 6-(x-1)^{2}\textrm{.} | &= 5-(x-1)^{2}+1 = 6-(x-1)^{2}\textrm{.} | ||
Zeile 17: | Zeile 17: | ||
A quick check shows that we have completed the square correctly | A quick check shows that we have completed the square correctly | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
6-(x-1)^{2} | 6-(x-1)^{2} | ||
&= 6-(x^{2}-2x+1)\\[5pt] | &= 6-(x^{2}-2x+1)\\[5pt] |
Version vom 08:31, 22. Okt. 2008
As always when completing the square, we focus on the quadratic and linear terms \displaystyle 2x-x^{2}, which we also can write as \displaystyle -(x^{2}-2x). If we neglect the minus sign, we can complete square of the expression \displaystyle 2x-x^{2} by using the formula
\displaystyle x^{2}-ax = \Bigl(x-\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2} |
and we obtain
\displaystyle x^{2}-2x = \Bigl(x-\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x-1)^{2}-1\,\textrm{.} |
This means that
\displaystyle \begin{align}
5+2x-x^{2} &= 5-(x^{2}-2x) = 5-\bigl((x-1)^{2}-1\bigr)\\[5pt] &= 5-(x-1)^{2}+1 = 6-(x-1)^{2}\textrm{.} \end{align} |
A quick check shows that we have completed the square correctly
\displaystyle \begin{align}
6-(x-1)^{2} &= 6-(x^{2}-2x+1)\\[5pt] &= 6-x^{2}+2x-1\\[5pt] & =5+2x-x^{2}\textrm{.} \end{align} |