Lösung 2.2:1c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Because there is an ''x'' on both the left- and right-hand sides, the first step is to subtract ''x''/3 from both sides,
Because there is an ''x'' on both the left- and right-hand sides, the first step is to subtract ''x''/3 from both sides,
-
{{Displayed math||<math>\tfrac{1}{3}x-1-\tfrac{1}{3}x=x-\tfrac{1}{3}x</math>}}
+
{{Abgesetzte Formel||<math>\tfrac{1}{3}x-1-\tfrac{1}{3}x=x-\tfrac{1}{3}x</math>}}
so as to collect ''x'' on the right-hand side
so as to collect ''x'' on the right-hand side
-
{{Displayed math||<math>-1=\tfrac{2}{3}x\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>-1=\tfrac{2}{3}x\,\textrm{.}</math>}}
Then, multiply both sides by 3/2,
Then, multiply both sides by 3/2,
-
{{Displayed math||<math>\tfrac{3}{2}\cdot (-1) = \tfrac{3}{2}\cdot\tfrac{2}{3}x\,,</math>}}
+
{{Abgesetzte Formel||<math>\tfrac{3}{2}\cdot (-1) = \tfrac{3}{2}\cdot\tfrac{2}{3}x\,,</math>}}
so that 2/3 can be eliminated on the right-hand side to give us
so that 2/3 can be eliminated on the right-hand side to give us
-
{{Displayed math||<math>-\tfrac{3}{2}=x\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>-\tfrac{3}{2}=x\,\textrm{.}</math>}}

Version vom 08:26, 22. Okt. 2008

Because there is an x on both the left- and right-hand sides, the first step is to subtract x/3 from both sides,

\displaystyle \tfrac{1}{3}x-1-\tfrac{1}{3}x=x-\tfrac{1}{3}x

so as to collect x on the right-hand side

\displaystyle -1=\tfrac{2}{3}x\,\textrm{.}

Then, multiply both sides by 3/2,

\displaystyle \tfrac{3}{2}\cdot (-1) = \tfrac{3}{2}\cdot\tfrac{2}{3}x\,,

so that 2/3 can be eliminated on the right-hand side to give us

\displaystyle -\tfrac{3}{2}=x\,\textrm{.}