Lösung 2.1:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The lowest common denominator for the three terms is <math>(x-2)(x+3)</math> and we expand each term so that all terms have the same denominator
The lowest common denominator for the three terms is <math>(x-2)(x+3)</math> and we expand each term so that all terms have the same denominator
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{x}{x-2}+\frac{x}{x+3}-2
\frac{x}{x-2}+\frac{x}{x+3}-2
&= \frac{x}{x-2}\cdot\frac{x+3}{x+3} + \frac{x}{x+3}\cdot\frac{x-2}{x-2} - 2\cdot\frac{(x-2)(x+3)}{(x-2)(x+3)}\\[5pt]
&= \frac{x}{x-2}\cdot\frac{x+3}{x+3} + \frac{x}{x+3}\cdot\frac{x-2}{x-2} - 2\cdot\frac{(x-2)(x+3)}{(x-2)(x+3)}\\[5pt]
Zeile 11: Zeile 11:
Now, collect the terms in the numerator
Now, collect the terms in the numerator
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{x}{x-2}+\frac{x}{x+3}-2 &= \frac{(x^{2}+x^{2}-2x^{2})+(3x-2x-6x+4x)+12}{(x-2)(x+3)}\\[5pt]
\frac{x}{x-2}+\frac{x}{x+3}-2 &= \frac{(x^{2}+x^{2}-2x^{2})+(3x-2x-6x+4x)+12}{(x-2)(x+3)}\\[5pt]
&= \frac{-x+12}{(x-2)(x+3)}\,\textrm{.}
&= \frac{-x+12}{(x-2)(x+3)}\,\textrm{.}

Version vom 08:24, 22. Okt. 2008

The lowest common denominator for the three terms is \displaystyle (x-2)(x+3) and we expand each term so that all terms have the same denominator

\displaystyle \begin{align}

\frac{x}{x-2}+\frac{x}{x+3}-2 &= \frac{x}{x-2}\cdot\frac{x+3}{x+3} + \frac{x}{x+3}\cdot\frac{x-2}{x-2} - 2\cdot\frac{(x-2)(x+3)}{(x-2)(x+3)}\\[5pt] &= \frac{x(x+3)+x(x-2)-2(x-2)(x+3)}{(x-2)(x+3)}\\[5pt] &= \frac{x^{2}+3x+x^{2}-2x-2(x^{2}+3x-2x-6)}{(x-2)(x+3)}\\[5pt] &= \frac{x^{2}+3x+x^{2}-2x-2x^{2}-6x+4x+12}{(x-2)(x+3)}\,\textrm{.} \end{align}

Now, collect the terms in the numerator

\displaystyle \begin{align}

\frac{x}{x-2}+\frac{x}{x+3}-2 &= \frac{(x^{2}+x^{2}-2x^{2})+(3x-2x-6x+4x)+12}{(x-2)(x+3)}\\[5pt] &= \frac{-x+12}{(x-2)(x+3)}\,\textrm{.} \end{align}

Note: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.