Lösung 2.1:5b
Aus Online Mathematik Brückenkurs 1
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We can factorize the denominators as | We can factorize the denominators as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
y^{2}-2y &= y(y-2)\\ | y^{2}-2y &= y(y-2)\\ | ||
y^{2}-4 &= (y-2)(y+2)\quad\text{[difference of two squares]} | y^{2}-4 &= (y-2)(y+2)\quad\text{[difference of two squares]} | ||
Zeile 10: | Zeile 10: | ||
Now, we rewrite the fractions so that they have same denominators and start simplifying | Now, we rewrite the fractions so that they have same denominators and start simplifying | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{1}{y^{2}-2y}-\frac{2}{y^{2}-4} | \frac{1}{y^{2}-2y}-\frac{2}{y^{2}-4} | ||
&= \frac{1}{y(y-2)}\cdot\frac{y+2}{y+2}-\frac{2}{(y-2)(y+2)}\cdot\frac{y}{y}\\[5pt] | &= \frac{1}{y(y-2)}\cdot\frac{y+2}{y+2}-\frac{2}{(y-2)(y+2)}\cdot\frac{y}{y}\\[5pt] | ||
Zeile 20: | Zeile 20: | ||
The numerator can be rewritten as <math>-y+2=-(y-2)</math> and we can eliminate the common factor <math>y-2</math>, | The numerator can be rewritten as <math>-y+2=-(y-2)</math> and we can eliminate the common factor <math>y-2</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{-y+2}{y(y-2)(y+2)} = \frac{-(y-2)}{y(y-2)(y+2)} = \frac{-1}{y(y+2)} = -\frac{1}{y(y+2)}\,\textrm{.}</math>}} |
Version vom 08:24, 22. Okt. 2008
We can factorize the denominators as
\displaystyle \begin{align}
y^{2}-2y &= y(y-2)\\ y^{2}-4 &= (y-2)(y+2)\quad\text{[difference of two squares]} \end{align} |
and then we see that the terms' lowest common denominator is \displaystyle y(y-2)(y+2) because it is the product that contains the smallest number of factors which contain both \displaystyle y(y-2) and \displaystyle (y-2)(y+2).
Now, we rewrite the fractions so that they have same denominators and start simplifying
\displaystyle \begin{align}
\frac{1}{y^{2}-2y}-\frac{2}{y^{2}-4} &= \frac{1}{y(y-2)}\cdot\frac{y+2}{y+2}-\frac{2}{(y-2)(y+2)}\cdot\frac{y}{y}\\[5pt] &= \frac{y+2}{y(y-2)(y+2)} - \frac{2y}{(y-2)(y+2)y}\\[5pt] &= \frac{y+2-2y}{y(y-2)(y+2)}\\[5pt] &= \frac{-y+2}{y(y-2)(y+2)}\,\textrm{.} \end{align} |
The numerator can be rewritten as \displaystyle -y+2=-(y-2) and we can eliminate the common factor \displaystyle y-2,
\displaystyle \frac{-y+2}{y(y-2)(y+2)} = \frac{-(y-2)}{y(y-2)(y+2)} = \frac{-1}{y(y+2)} = -\frac{1}{y(y+2)}\,\textrm{.} |