Lösung 2.1:1c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The factor <math> -x^2 </math> can be written as <math>(-1)x^2</math> and both factors can be multiplied into the bracket | The factor <math> -x^2 </math> can be written as <math>(-1)x^2</math> and both factors can be multiplied into the bracket | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
-x^2 (4-y^2) &= (-1)x^2(4-y^2)\\[3pt] | -x^2 (4-y^2) &= (-1)x^2(4-y^2)\\[3pt] | ||
&= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2\\[3pt] | &= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2\\[3pt] | ||
&= -4x^2 +x^2 y^2\,\textrm{.} | &= -4x^2 +x^2 y^2\,\textrm{.} | ||
\end{align}</math>}} | \end{align}</math>}} |
Version vom 08:20, 22. Okt. 2008
The factor \displaystyle -x^2 can be written as \displaystyle (-1)x^2 and both factors can be multiplied into the bracket
\displaystyle \begin{align}
-x^2 (4-y^2) &= (-1)x^2(4-y^2)\\[3pt] &= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2\\[3pt] &= -4x^2 +x^2 y^2\,\textrm{.} \end{align} |