Lösung 2.1:1b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
When the factor <math>xy</math> is multiplied by the expression inside the brackets, <math> 1+x+x^2 </math>, the distributive rule gives that all three terms <math>1</math>, <math>x</math> and <math>-x^2</math> are multiplied by <math>xy</math>,
When the factor <math>xy</math> is multiplied by the expression inside the brackets, <math> 1+x+x^2 </math>, the distributive rule gives that all three terms <math>1</math>, <math>x</math> and <math>-x^2</math> are multiplied by <math>xy</math>,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy\\[3pt]
(1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy\\[3pt]
&= xy+x^2y-x^3y\,\textrm{.}
&= xy+x^2y-x^3y\,\textrm{.}
\end{align}
\end{align}
</math>}}
</math>}}

Version vom 08:20, 22. Okt. 2008

When the factor \displaystyle xy is multiplied by the expression inside the brackets, \displaystyle 1+x+x^2 , the distributive rule gives that all three terms \displaystyle 1, \displaystyle x and \displaystyle -x^2 are multiplied by \displaystyle xy,

\displaystyle \begin{align}

(1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy\\[3pt] &= xy+x^2y-x^3y\,\textrm{.} \end{align}